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Abstract
The problem of construction of integrable boundary conditions for the
discrete Toda chain is considered. The restricted chains for properly chosen
closure conditions are reduced to the well-known discrete Painlevé equations
dPIII , dPV , dPV I . Lax representations for these discrete Painlevé equations
are found.

PACS numbers: 02.30.Ik, 02.30.Hq, 02.30.Jr

1. Introduction

In the paper [1] the problem of construction of integrable boundary conditions for the Toda
lattice equation

qn,xx = eqn+1−qn − eqn−qn−1 (1)

is considered. It is shown that generalized Toda equations corresponding to the non-exceptional
affine Lie algebras of finite growth arise as finite-dimensional reductions of the Toda chain.
Deformations of the boundary conditions found are presented which leads to the Painlevé
equations PIII , PV and PV I . Note that the relationship between Painlevé equations PI –PV I

and the Toda chain (1) is established in the framework of the functional approach also [2, 3].
It is well known that the Toda lattice (1) admits several different integrable discretizations

[4, 5]. In this paper we will show that all results of the work [1] can be obtained in the case of
the following discrete version of the Toda lattice [5]:

qm+1,n − 2qm,n + qm−1,n = ln
eqm,n+1−qm,n + 1

eqm,n−qm,n−1 + 1
which can also be presented in variables um,n = eqm,n

um+1,n = u2
m,n(1 + um,n+1/um,n)

um−1,n(1 + um,n/um,n−1)
. (2)
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The discrete Toda chain (2) is referred to as a two-dimensional reduction of Hirota’s bilinear
equation [6, 7], which has applications in statistical physics and quantum field theory [8, 9].

There are different possibilities for truncating the chains that conserve the integrability
property [10, 5]. In the paper [1] boundary conditions consistent with the higher symmetries
of the Toda chain are considered. For chains that admit a zero curvature representation, there
is an alternative method for seeking cut-off constraints (boundary conditions) compatible with
the conservation laws of the chain [11–13]. In this paper we will apply this method to the
discrete Toda chain (2).

The discrete Toda chain (2) is equivalent to the matrix equation

Lm+1,n(λ)Am,n(λ) = Am,n+1(λ)Lm,n(λ), (3)

which is a consistency condition (the zero curvature equation) of two linear equations

Ym,n+1(λ) = Lm,n(λ)Ym,n(λ), (4)

Ym+1,n(λ) = Am,n(λ)Ym,n(λ), (5)

where λ is a parameter and Lm,n, Am,n are matrices of the following form [5]:

Lm,n =
(

λ + um,n

um−1,n
um,n

λ 1
um−1,n

0

)
, Am,n =

(
λ um,n

λ 1
um,n−1

−1

)
.

Definition. We will call a boundary condition

um,0 = F(m, um,1, um−1,1, . . . , um,M, um−1,M) (6)

compatible with zero curvature equation (3) if equation (5) at the spatial point n = 1

Ym+1,1(λ) = Am,1(λ)|um,0=F Ym,1(λ) (7)

has an additional point symmetry of the form

Ỹ m,1(λ̃) = H(m, [u], λ)Ym,1(λ), λ̃ = h(λ). (8)

In other words boundary condition (6) is integrable if there exists a matrix-valued function

H(m, [u], λ) = H(m, um,1, um−1,1, . . . , um,k, um−1,k, λ)

together with the involution λ̃ = h(λ) such that for any solution Ym,0(λ) of equation (7) the
function (8) is a solution of the same equation. It means that the following equality:

H(m + 1, [u], λ)Am,0(λ) = Am,0(λ̃)H(m, [u], λ) (9)

is valid.
We note that equation (9) contains three unknowns (the boundary condition F(m, [u]),

the involution λ̃, and the matrix H(m, [u], λ)) and generally speaking it has an infinite set of
solutions. But if we fix a set of arguments of one of the functions H(m, [u], λ) or F(m, [u]) (i.e.
if we fix number k or M) we obtain additional conditions that suffice to determine the desired
functions. In section 2 we represent several kinds of boundary conditions compatible with
zero curvature equation (3) of the discrete Toda chain (2). Some of them were found earlier
in [5, 11]. In particular, in [5] it is shown that generalized discrete Toda chains corresponding
to the all non-exceptional affine Lie algebras can be obtained as finite-dimensional reductions
of the discrete Toda equation (2).
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The boundary condition (6) reduces the chain (2) to a half-line. To obtain finite-
dimensional system we impose two boundary conditions

um,0 = F1(m, um,1, um−1,1, . . . , um,M, um−1,M),
(10)

um,N+1 = F2(m, um,1, um−1,1, . . . , um,K, um−1,K),

1 � M,K � N , which are assumed to be compatible with zero curvature equation (3).
According to our definition above equality (9) holds at the points n1 = 1 and n2 = N + 1,
while the functions H(m, [u], λ) and λ̃ at these points are equal to the matrices H1 =
H1(m, [u], λ),H2 = H2(m, [u], λ) and involutions λ̃1 and λ̃2, respectively.

Let us suppose that involutions λ̃1 and λ̃2 coincide (i.e. λ̃1 = λ̃2 = λ̃). In this case we
can construct the generating function for the integrals of motion of this system in the standard
way [10]

g(λ) = trace
(
P(m, λ)H−1

1 (m, λ)P −1(m, λ̃)H2(m, λ)
)
, (11)

where P(m, λ) = Lm,N(λ), . . . , Lm,1(λ). Similar to the continuous case [14] one can solve
this system by utilizing a definite number of symmetries in addition to integrals of motion
(see [13]). The set of necessary symmetries can be found by using the properly chosen master
symmetries.

The case λ̃1 �= λ̃2 in the continuous limit corresponds to finite-dimensional reductions of
differential–difference Toda chain (2) obtained by imposing deforming integrable boundary
conditions. As mentioned above deformation of the boundary conditions for the Toda chain
(1) leads to the Painlevé-type equations (see [1]). It is shown in section 3 that if N = 1 and
λ̃1 �= λ̃2 then the restricted discrete chains for certain choices of closure conditions are reduced
to the well-known discrete Painlevé equations dPIII , dPV , dPV I (see (59), (61), (62) below).

2. Boundary conditions consistent with zero curvature equation

In this section we consider boundary condition of the form (6) for the discrete Toda chain
(2) assuming that it is compatible with the zero curvature equation. Let us start with the
matrix-equation (9) which is the main equation for defining boundary conditions. It gives rise
to a system of four scalar equations on elements of matrices H(m, λ) and H(m + 1, λ) (we
denote hij = (H(m, λ))ij and h̄ij = (H(m + 1, λ))ij )

λh̄11 + λh̄12F = λ̃h11 + h21um,1, (12)

h̄11um,1 − h̄12 = λ̃h12 + h22um,1, (13)

λh̄21 + λh̄22F = λ̃h11F − h21, (14)

h̄21um,1 − h̄22 = λ̃h12F − h22. (15)

Proposition 1. Suppose that the boundary condition (6) for the discrete Toda chain (2)
is compatible with zero curvature equation (3) and the corresponding matrix H = H(m, λ)

depends on temporal variable m and λ only, i.e. it does not depend on the dynamical variables.
Then it is read as

F = 1

um,0
= αµ−2mum,1 + βµ−m. (16)

Here and below α, β, µ are arbitrary constants.
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Remark. We note that boundary condition (16) was previously found in the particular
case when µ = 1 and α1 = 0, β1 = 0, α2 = 2, β2 = 0 and α3 = 0, β3 = 1 (see [5]). Suris
elaborated an algebraic structure of finite-dimensional reductions of the discrete Toda chain (2)
obtained by imposing one of these boundary conditions. In the case um,0 = ∞, um,N+1 = −∞
complete integrability of the corresponding system is proved.

The case µ = 1 with arbitrary constants α, β has been investigated in [13]. It was shown
that the corresponding finite-dimensional systems are integrated in quadratures.

Proof of proposition 1. Since the elements of the matrix H do not depend on dynamical
variables it follows from equation (13) that h12 = (−λ̃)ma where a = const and

h̄11 = h22. (17)

If we assume that h12 �= 0 then the boundary condition F is easily found from (15)

F = h̄21um,1 − h̄22 + h22

λ̃h12
.

Substitution of expressions for h12 and F into (12) yields

−λh̄21um,1 + λh̄22 = λ̃h11 + h21um,1.

In virtue of independence of the matrix H on dynamical variables the last equation gives
h21 = (− 1

λ

)m
b, where b = const, and

h̄22 = λ̃

λ
h11. (18)

Taking into account expressions (17), (18) and independence of the function F upon the
parameter λ we immediately find the boundary condition (16) where notation α = −b and
µ2 = 1/a are used. The matrix H and involution λ̃ take the form

H(m, λ) =
(

(−1/λ)m−1 1
λ+µ

βµm−1 (−1/λ)mµ2(m−1)

−(−1/λ)mα (−1/λ)m 1
λ+µ

βµm

)
, λ̃ = µ2/λ. (19)

The proposition is proved.

Remark. If F = 0 , i.e. α = β = 0, then we have

H(m, λ) =
(

0 (−λ)mµ2(m−1)

0 0

)
.

In this case system (12)–(15) has one more solution

H(m, λ) =
(

b (−λ)ma

0 b

)
, λ̃ = λ.

Proposition 2. Suppose that the boundary condition (6) for the discrete Toda chain
(2) compatible with zero curvature equation (3) and the corresponding matrix H =
H(m, um,1, um−1,1, λ) depends on dynamical variables um,1 and um−1,1. Then it is read
as

(1) F = 1

um,0
= µ−2m um,1um,2

um−1,1
+

(µum−1,1 − um,1)
2

um−1,1(µ2m − µ2um,1um−1,1)

+
αum,1 + β

(
µ1−mu2

m,1 + µm
)

µ2m − µ2um,1um−1,1
, (20)
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(2) F = 1

um,0
= um,1 + um,2

αu2
m−1,1

− 1

um,1
. (21)

Remark. Consider the discrete Toda chain (2) with boundary condition of the form (16)
where α = β = 0 at the left endpoint and with (20) where µ = 1, α = β = 0 at the right
endpoint

e−qm,0 = 0, (22)

qm+1,n − 2qm,n + qm−1,n = ln
eqm,n+1−qm,n + 1

eqm,n−qm,n−1 + 1
, n = 1, . . . , N − 1, (23)

qm+1,N − 2qm,N + qm−1,N = ln
eqm−1,N −2qm,N −qm,N−1 + (eqm−1,N −eqm,N )2

e2qm,N (eqm−1,N +qm,N −1)
+ 1

eqm,N −qm,N−1 + 1
. (24)

This system in the continuous limit corresponds to the generalized Toda chain

e−q0 = 0, (25)

qn,xx = eqn+1−qn − eqn−qn−1 , n = 1, . . . , N − 1, (26)

eqN+1 = e−qN−1 +
q2

N,x

2 sinh qN

, (27)

which is related to the Lie algebras of series Dn [1]. Years ago in [5] the following discrete
analogues of (25)–(27) were suggested:

e−qm,0 = 0, (28)

qm+1,n − 2qm,n + qm−1,n = ln
eqm,n+1−qm,n + 1

eqm,n−qm,n−1 + 1
, n = 1, . . . , N − 2, (29)

qm+1,N−1 − 2qm,N−1 + qm−1,N−1 = ln
(eqm,N −qm,N−1 + 1)(e−qm,N −qm,N−1 + 1)

eqm,N−1−qm,N−2 + 1
, (30)

qm+1,N − 2qm,N + qm−1,N = ln
e−qm,N −qm,N−1 + 1

eqm,N −qm,N−1 + 1
. (31)

Unfortunately we failed to find the relation between these two discrete analogues.

Proof of proposition 2. Consider the system of equations (12)–(15). Assume that h12 �= 0
then it follows from (15) that

F = h̄21um,1 − h̄22 + h22

λ̃h12
. (32)

Let us differentiate equation (13) with respect to the variable um,2. This leads to the equation

∂(h̄11um,1 − h̄12)

∂um+1,1

∂um+1,1

∂um,2
= 0. (33)

By setting ∂um+1,1

∂um,2
�= 0 (we cannot find F in the opposite case) and integrating (33) one finds

that h̄11um,1 − h̄12 = g1(um,1) or h11 = g1(um−1,1) + h12/um−1,1. Analysis of the left-hand
side of equation (13) leads us to the expression h22 = g1(um,1) − λ̃h12/um,1. Here and below
we use gi(um,1) to denote some functions depending on dynamical variables.
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Substituting obtained expressions into (12) yields

λh̄12h̄21um,1 − λh̄12
g1(um+1,1)

um+1,1
+ λλ̃h̄2

12
1

um+1,1
+ λh̄12

g1(um,1)

um,1

= λ̃2h12
g1(um−1,1)

um−1,1
+ λ̃2h2

12
1

um−1,1
+ λ̃h12h21um,1 − λλ̃h12

g1(um,1)

um,1
.

Recall that ∂um+1,1

∂um,2
�= 0, so we can separate the last expression into two equalities

λh̄12h̄21um,1 − λh̄12
g1(um+1,1)

um+1,1
+ λλ̃h̄2

12
1

um+1,1
+ λh̄12

g1(um,1)

um,1
= g2(um,1), (34)

λ̃2h12
g1(um−1,1)

um−1,1
+ λ̃2h2

12
1

um−1,1
+ λ̃h12h21um,1 − λλ̃h12

g1(um,1)

um,1
= g2(um,1). (35)

Let us find h21 from (35)

h21 = g2(um,1)

λ̃h12um,1
− λ̃g1(um−1,1)

um,1um−1,1
− λ̃h12

um,1um−1,1
+

λg1(um,1)

u2
m,1

.

After that equation (34) takes the form

h̄12

(
λ

g1(um,1)

um,1
− λλ̃

g1(um,1)

um+1,1
+ λ2 um,1g1(um+1,1)

u2
m+1,1

− λ
g1(um+1,1)

um+1,1

)

= g2(um,1) − λ

λ̃

g2(um+1,1)um,1

um+1,1
. (36)

One can easily see that equation (14) is rewritten by means of (36) as follows:(
g1(um+1,1)

um+1,1h̄12
− λ̃

λ

g1(um−1,1)

h̄12um−1,1
+ λ̃

h12

um,1h̄12
− λ̃

1

um+1,1
− λ̃

λ

h12

h̄12um−1,1
+

1

um,1

)
= 0.

The condition ∂um+1,1

∂um,2
�= 0 allows one to obtain the following two equalities from the last

equation:

g1(um+1,1)

um+1,1
+ h̄12

um+1,1 − λ̃um,1

um+1,1um,1
= g3(um,1), (37)

λ̃

λ

g1(um−1,1)

um−1,1
+ h12

λ̃

λ

um,1 − λum−1,1

um,1um−1,1
= g3(um,1). (38)

We can find unknown h12 from (37)

h12 = um,1um−1,1

um,1 − λ̃um−1,1

(
g3(um−1,1) − g1(um,1)

um,1

)
. (39)

Substitution of this expression for h12 into (38) leads to equality
λ

λ̃
g3(um,1)um,1 + g1(um,1) + λ̃g1(um−1,1) + λg3(um−1,1)um−1,1

= λum−1,1g3(um,1) + um,1
g1(um−1,1)

um−1,1
+ g3(um−1,1)um,1 + λum−1,1

g1(um,1)

um,1
.

(40)

Differentiation of (40) with respect to the variables um,1 and um−1,1 gives the equation

∂
(

g1(um−1,1)

um−1,1
+ g3(um−1,1)

)
∂um−1,1

= −λ
∂

(
g1(um,1)

um,1
+ g3(um,1)

)
∂um,1

,
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from which it follows that

g3(um,1) =
(

−1

λ

)m+1

c0um,1 − g1(um,1)

um,1
+ c1(m).

Let ci = ci(λ) and ci(m) = ci(m, λ) be some functions depending only on λ and λ,m

respectively.
Substituting the expression for g3(um,1) into (40) yields

1

λ̃

(
−1

λ

)m

c0u
2
m,1 +

λ

λ̃
g1(um,1) − λ

λ̃
c1(m)um,1 − g1(um,1) + c1(m − 1)um,1

= −
(

−1

λ

)m−1

c0u
2
m−1,1 − λg1(um−1,1) + λc1(m − 1)um−1,1

− λ̃g1(um−1,1) + λc1(m)um−1,1.

Left- and right-hand sides of the last equality depend only on um,1 and um−1,1 respectively.
Consequently c1(m + 1) = λ̃

λ
c1(m − 1) and

g1(um,1) = 1

λ̃ − λ

(
(−λ̃)m+1c2 +

(
−1

λ

)m

c0u
2
m,1 − λ(c1(m) − c1(m + 1))um,1

)
. (41)

Return to the equality (36). Taking into consideration (39) and (41) one gets

g2(um,1)

um,1
+

(
−1

λ

)m

c0g1(um,1) + λ
g2

1(um,1)

u2
m,1

− λc1(m)
g1(um,1)

um,1

= λ

λ̃

g2(um+1,1)

um+1,1
+

(
−1

λ

)m+1
λ

λ̃
c0g1(um+1,1) +

λ2

λ̃

g2
1(um+1,1)

u2
m+1,1

− λ2

λ̃
c1(m + 1)

g1(um+1,1)

um+1,1
.

Analysis of the last equation shows that

g2(um,1) =
(

λ̃

λ

)m

c3um,1 −
(

−1

λ

)m

c0g1(um,1)um,1 − λ
g2

1(um,1)

um,1
+ λc1(m)g1(um,1).

As the function F does not depend on parameter λ we have λ̃ = µ2/λ and

F = g2(um,1)

µ2h̄12h12
− 1

um,1
, (42)

where

h12 =
√

λ

(λ2 − µ2)

(
−1

λ

)m

(a0um,1um−1,1 + µ2ma2),

g2(um,1) = 1

(λ2 − µ2)2

(
1

λ

)2m (
µ2ma3um,1 − µ2a2

0u
3
m,1 + µm+1a0a1u

2
m,1

−µ4m+4a2
2

1

um,1
− µ3m+2a2a1

)
,

g1(um,1) =
√

λ

(λ2 − µ2)

(
−1

λ

)m (
µ2m+2a2

λ
− a0u

2
m,1 +

µma1

λ − µ
um,1

)
,

and ai, i = 0, 1, 2, 3 are arbitrary constants.
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The function h̄12 being contained in the expression for F depends on the variable um+1,1

which is not dynamical, i.e. it can be expressed through variables um,1, um−1,1, um,2 and
function F

um+1,1 = (um,1 + um,2)um,1

um−1,1(1 + um,1F)
.

Therefore if we denote a0 = −a2µ
2, a3 = a2µ

4(2a2µ + α), a1 = βa2µ
2 then the equality

(32) gives boundary condition (20). The matrix H and involution λ̃ are the following:

H =

 g1(um−1,1)+h12

um−1,1
h12

λg2(um,1)

µ2h12um,1
− µ2(g1(um−1,1)+h12)

λum,1um−1,1
+ λ

g1(um,1)

u2
m,1

λg1(um,1)−µ2h12

λum,1


 , λ̃ = µ2

λ
.

Now suppose that h12 = 0. Then the system (12)–(15) takes the form

λh̄11 = λ̃h11 + h21um,1, (43)

h̄11 = h22, (44)

λh̄21 + λh̄22F = λ̃h11F − h21, (45)

h̄21um,1 − h̄22 = h22. (46)

The system (43)–(46) has a nontrivial solution if we assume that ∂um+1,1

∂um,2
= 0, i.e.

F = g0(um,1, um−1,1)

(
1 +

um,2

um,1

)
− 1

um,1
,

and consequently

um+1,1 = um,1

um−1,1g0(um,1, um−1,1)
.

Taking into account (44) we get from equations (43) and (46)

h̄11 = h11
λ̃um−1,1 − um,1

λum−1,1 − um,1
, h21 = h11

λ̃ − λ

λum−1,1 − um,1
,

and so (45) takes the form

(λ − λ̃)(1 + um,1F)(um+1,1 − λλ̃um−1,1) = 0. (47)

It implies that um+1,1 = λλ̃um−1,1. The other factors in (47) do not vanish. Really, if λ− λ̃ = 0
then H is equal to the identity matrix, which gives no involution. As for the middle factor it
coincides with the factor 1 + um,1

um,0
which is contained in the denominator of the chain itself.

In the domain of the right-hand side of the chain (2) it must be different from zero. Since
∂um+1,1

∂λ
= 0 we have λ̃ = α/λ. Thus, the boundary condition F takes the form (21), the matrix

H and the involution λ̃, respectively, are of the form

H =
(

g(m) 0

g(m) α−λ2

λ(λum−1,1−um,1)
g(m + 1)

)
, λ̃ = α

λ
,

where g(m) = ∏m
k=0

αum−1,1−λum,1

λ(λum−1,1−um,1)
. The proposition is proved.
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3. Discrete Painlevé equations

Consider the truncated system (2), (10) in the case of different involutions λ̃1 �= λ̃2 at the
endpoints n = 0 and n = 2. So that the endpoints are taken as close as possible, i.e. N = 1.
The boundary conditions F1 and F2 imposed at n = 0 and n = 2 are of one of the forms
represented by (16) or (20). Denote through H1(λ,m),H2(λ,m) the matrices H corresponding

to each endpoint. In the case of (16) and (20) the involutions are of the form λ̃1 = µ2
1

λ
, λ̃2 = µ2

2
λ

.
Thus the system (2), (10) takes the form

1

um,0
= F1(m, um,1, um−1,1), (48)

um+1,1 = u2
m,1(1 + um,2/um,1)

um−1,1(1 + um,1/um,0)
, (49)

um,2 = F2(m, um,1, um−1,1). (50)

It was shown in [1] that the differential–difference Toda equation (1) admits finite-dimensional
reductions of the Painlevé type. The same can be done in our case of purely discrete equations.

Proposition 3. The system (48)–(50) is equivalent to the matrix equation

Am(δλ)Mm(λ) = Mm+1(λ)Am(λ), (51)

which is the consistency condition of two linear equations

Ym+1(λ) = Am(λ)Ym(λ), (52)

Ym(δλ) = Mm(λ)Ym(λ), (53)

where Mm(λ) = H1
(µ2

2
λ

,m
)
L−1

m

(µ2
2

λ

)
H−1

2

(µ2
2

λ
,m

)
Lm(λ) and δ = µ2

1

/
µ2

2.

Proof. Boundary conditions (48) and (50) are consistent with zero curvature equation (3). It
follows from it that equation (5) taken at the spatial points n = 1 and n = 2

Ym+1,1(λ) = Am,1(λ)Ym,1(λ), Ym+1,2(λ) = Am,2(λ)Ym,2(λ) (54)

possesses additional linear transformations

Ym,1

(
µ2

1

λ

)
= H1(λ,m)Ym,1(λ), (55)

Ym,2

(
µ2

2

λ

)
= H2(λ,m)Ym,2(λ). (56)

As we said above the system (48)–(50) is equivalent to the consistency condition of
equation (54) with the following one:

Ym,2(λ) = Lm,1(λ)Ym,1(λ). (57)

Replacing λ → µ2
2

λ
in (57) and taking into account (56) gives

Ym,1

(
µ2

2

λ

)
= L−1

m,1

(
µ2

2

λ

)
H2(λ,m)Lm,1(λ)Ym,1(λ).
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Substituting the last expression into (55) we get

Ym,1

(
µ2

1

λ

)
= H1(λ,m)L−1

m,1(λ)H−1
2 (λ,m)Lm,1

(
µ2

2

λ

)
Ym,1

(
µ2

2

λ

)
. (58)

Replacing again λ → µ2
2

λ
in (58) we get the equality

Ym,1

(
µ2

1

µ2
2

λ

)
= H1

(
µ2

2

λ
,m

)
L−1

m,1

(
µ2

2

λ

)
H−1

2

(
µ2

2

λ
,m

)
Lm,1(λ)Ym,1(λ).

Omit the second subindex in um,1. So equation (57) is equivalent to equation (53). The
proposition is proved.

Thus the system (48)–(50) possesses Lax pair (52), (53), which is typical for the discrete
Painlevé equations. Consider several illustrative examples. �

Example 1. The system (48)–(50) with boundary conditions
1

um,0
= α1um,1 + β1, um,2 = α2µ

2m 1

um,1
+ β2µ

m

gives rise to the equation on variables um = um,1

um+1um−1 = u2
m + β2µ

mum + α2µ
2m

α1u2
m + β1um + 1

, (59)

which is one of the forms of the third discrete Painlevé equation dPIII [15, 16]. Check that
in the continuous limit it approaches the PIII equation. Return to the variables um = eqm and
take µ = e2h, α1 = ᾱ1h

2, α2 = ᾱ2h
2, β1 = β̄1h

2, β2 = β̄2h
2. Then equation (59) takes the

form

qm+1 − 2qm + qm−1 = ln
1 + h2(ᾱ2 e4mh−2qm + β̄2 e2mh−qm)

1 + h2(ᾱ1 e2qm + β̄1 eqm)
.

Let h → 0 in the last equation, then we have

qxx = ᾱ2 e4x−2q + β̄2 e2x−q − ᾱ1 e2q − β̄1 eq . (60)

Substitution of eq(x) = zy(z), z = ex in (60) gives the third Painlevé equation [17]

yzz = y2
z

y
− yz

z
+

1

z
(Ay2 + B) + Cy3 +

D

y
,

where parameters are A = −β̄1, B = β̄2, C = −ᾱ1,D = ᾱ2.
By using proposition 3 we can find a matrix M for zero curvature equation (51) according

to equation (59) (we denote mij = (M)ij )

m12 = 1

ϕ
(µm+1λβ2 − α2(µ + λ)ξum),

m11 = m12

(
λ

um

+
1

um−1

)
+

µmλ

ϕum−1

(
β2ξ − µm(µ + λ)

1

um

)
,

m22 = 1

ϕ

(
β1β2µ

m+1 λ2

µ2 + λ
− α2(µ + λ)ηum

)
,

m21 = m22

(
λ

um

+
1

um−1

)
+

µmλ

ϕum−1

(
β2η − µm(µ + λ)β1

λ

um(µ2 + λ)

)
,

where

ϕ = µ2m

µ + λ

(
α2(µ + λ)2 − µλβ2

2

)
,

ξ = µ2λβ1um−1

µ2 + λ
+

µ2um−1 + λum

um

, η = α1λum−1 +
β1λ(µ2um−1 + λum)

um(µ2 + λ)
.
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Example 2. Impose boundary condition (16) at the point n = 0

1

um,0
= α1µ

−2mum,1 + β1µ
−m,

and (20) where µ = 1 at the point n = 2

um,2 = um−1,1

um,1um,0
− (um−1,1 − um,1)

2

um,1(1 − um,1um−1,1)
+

(
α2

(
u2

m,1 + 1
)

+ β2um,1
)
um−1,1

um,1(1 − um,1um−1,1)
.

Under these constraints the Toda chain (2) is reduced to the fifth discrete Painlevé equation
dPV [18]

(um+1um − 1)(umum−1 − 1) = pq(um − a)(um − 1/a)(um − b)(um − 1/b)

(um − p)(um − q)
, (61)

where p = p0µ
m, q = q0µ

m and p0, q0, a, b are constants such as the following equalities
hold

p0q0 = α2, p0 + q0 = −β2,

a +
1

a
+ b +

1

b
= α1,

(
a +

1

a

) (
b +

1

b

)
= −(3 + β1).

Return to the variables um = eqm in (61) again and take µ = e−h. We use the same
constants α1, α2, β1 and β2 as in example 1. If h → 0 then we have an equation

qxx = ᾱ1 e2x(1 − e2q) + β̄1 ex(e−q − eq) +
q2

x

e2q − 1
+

ᾱ2(eq + e−q) + β̄2

1 − e2q
,

which gives the fifth Painlevé equation by substituting eq(x) = y(z)+1
y(z)−1 , z = ex [17]

yzz =
(

1

2y
+

1

y − 1

)
y2

z − yz

z
+

(y − 1)2

z2

(
Ay +

B

y

)
+ C

y

z
+ D

y(y + 1)

y − 1
,

where parameters are the following 8A = −β̄2 −2ᾱ2, 8B = β̄2 −2ᾱ2, C = −2β̄1,D = −2ᾱ1.
We will use the following notation:

h(λ, µ) =
√

λ

λ2 − µ2
(µ2m − µ2umum−1),

g(um, λ, µ, β) =
√

λ

λ2 − µ2

(
µ2m+2

λ
+ µ2u2

m + βµm+2 um

λ − µ

)
,

f (um, λ, µ, α, β)= 1

(λ2 − µ2)2

(
µ2m+4um(2µ + α)− µ6u3

m −µm+5βu2
m − µ4m+4

um

− µ3m+4β

)
.

In this example functions h, g(um) and f (um) correspond to the following functions h
(

1
λ
, 1

)
,

g
(
um, 1

λ
, 1, β1

)
and f

(
um, 1

λ
, 1, α1, β1

)
. Therefore elements of the matrix M take the form

m12 = um

ϕ
(µ2m−2λξ2um−1 + ηζ ),

m11 = m12

(
λ

um

+
1

um−1

)
− λ

ϕum−1

(
µ2m−2λhumum−1 + ηξ1λu2

m

)
,

m22 = um

ϕ

(
λ2µmβ1ξ2um−1

1 + λµ
+

ζψ

h

)
,

m21 = m22

(
λ

um

+
1

um−1

)
− λ

ϕum−1

(
λµmβ1humum−1 + ψξ1λu2

m

)
,
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where

ξ1 = g(um−1) + h, ξ2 = g(um) − λh,

ϕ = λξ1umg(um) − um−1(f (um)um + g(um)h),

η = λβ1µ
m−1um−1

1 + λµ
+

µ2m−2(um−1 + λum)

um

,

ζ = f (um)umum−1 − λ2hξ1um + g(um)hum−1,

ψ = α1λum−1 +
λµmβ1(um−1 + λum)

um(1 + λµ)
.

Example 3. Consider the chain (2) with boundary conditions (20) where µ is arbitrary constant
at the point n = 0

1

um,0
= µ−2m um,1um,2

um−1,1
+

(µum−1,1 − um,1)
2

um−1,1(µ2m − µ2um,1um−1,1)
+

α1
(
µ1−mu2

m,1 + µm
)

+ β1um,1

µ2m − µ2um,1um−1,1
,

and where µ = 1 at the n = 2

um,2 = um−1,1

um,1um,0
− (um−1,1 − um,1)

2

um,1(1 − um,1um−1,1)
+

(
α2

(
u2

m,1 + 1
)

+ β2um,1
)
um−1,1

um,1(1 − um,1um−1,1)
.

Solving these equations with regard to the variables um,2 and um,0 and substituting them into
(2) one gets an equation on variables um = um,1 which is the sixth discrete Painlevé equation
dPV I [19]

(um+1um − pm+1pm)(umum−1 − pmpm−1)

(um+1um − 1)(umum−1 − 1)

= (um − apm)(um − pm/a)(um − bpm)(um − pm/b)

(um − c)(um − 1/c)(um − d)(um − 1/d)
, (62)

where p = p0µ
m, p2

0 = 1/µ and a, b, c, d are constants satisfying the following conditions:

a +
1

a
+ b +

1

b
= − α1

µp0
,

(
a +

1

a

) (
b +

1

b

)
= 4 +

β1

µ
,

c +
1

c
+ d +

1

d
= α2,

(
c +

1

c

) (
d +

1

d

)
= −(4 + β2).

One can take µ = eh to get the continuous limit

qxx = e−q − eq

(1 − e2x)(eq−2x − e−q)
((qx − 1)2 + ᾱ1(e

q−x + ex−q) + β̄1)

− e2x−q − eq

(1 − e2x)(eq − e−q)

(
q2

x − ᾱ2(e
q + e−q) − β̄2

)
.

Substituting eq(x) = y(z)+
√

z

y(z)−√
z
, ex = 1+

√
z

1−√
z

gives at once the sixth Painlevé equation [17]

yzz = 1

2

(
1

y
+

1

y − 1
+

1

y − z

)
y2

z −
(

1

z
+

1

z − 1
+

1

y − z

)
yz

+
y(y − 1)(y − z)

z2(z − 1)2

(
A + B

z

y2
+ C

z − 1

(y − 1)2
+ D

z(z − 1)

(y − z)2

)
,

where parameters are the following: 8A = β̄2 + 2ᾱ2, 8B = −β̄2 + 2ᾱ2, 8C = −β̄1 − 2ᾱ1,
8D = β̄1 − 2ᾱ1 + 4.



Finite-dimensional reductions of the discrete Toda chain 8101

Elements of the matrix M for equation (62) have the form

m12 = um

ϕ

(
λh2

1ψ2um−1 − ξ1ζ
)
,

m11 = m12

(
λ

um

+
1

um−1

)
+

λ2h1um

ϕum−1
(ξ1ψ1 − h1h2um−1),

m22 = um

ϕ

(
λh1um−1

um

ψ2ξ2 − ηζ

)
,

m21 = m22

(
λ

um

+
1

um−1

)
+

λ2h1

ϕum−1
(ηψ1um − h2ξ2um−1),

where we denote

h1 = h(1/λ, µ), h2 = h(1/λ, 1),

g1(um) = g(um, 1/λ, µ, β1), g2(um) = g(um, 1/λ, 1, β2),

f1(um) = f (um, 1/λ, µ, α1, β1), f2(um) = f (um, 1/λ, 1, α2, β2),

ξ1 = λumg1(um−1) − h1um−1, ξ2 = g1(um) − µ2λh1,

ψ1 = g2(um−1) + h2, ψ2 = g2(um) − λh2,

η = f1(um)um−1

h1µ2
− λg1(um) − λµ2ξ1

um

,

ζ = f2(um)um−1 − λ2h1ψ1 + h1g2(um)
um−1

um

,

ϕ = λh1ψ1g2(um)u − h2um−1(f2(um)um + g2(um)h1).
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